Issue 5, 2018

From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring

Abstract

Driven by the innate tendency of the system to attain a local energy minimum, self-organization enables the creation of complex systems out of relatively simple parts and elements. The ability to form hierarchical, multicomponent systems that may be difficult, or even impossible, to fabricate using pre-set, template-enabled processes makes self-organisation very attractive for the synthesis and assembly of advanced material systems across multiple length scales. Yet, driving and controlling such self-organisation processes is not a trivial task as they often arise from a complex interplay of physical and chemical processes. These in turn depend on the environment in which self-organisation takes place. In this topical review, we focus on one such environment and outline unique opportunities, salient characteristics and challenges presented by self-organization on surfaces exposed to partially ionised gases, i.e. plasmas. Using a select number of recent examples, we aim to show how salient features of plasma environments, particularly high fluxes of energy and matter from the plasma to the surface, enable functionalization and growth of complex nanostructures and metamaterials via self-organization on plasma-exposed surfaces. We will show how by controlling different physical and chemical parameters of the plasma environment and how it interacts with surfaces, it is possible to control self-organization processes at multiple length scales, making it a promising enabling platform for nanosynthesis. We will discuss examples starting from the self-driven growth of perfect crystalline lattices, such as nano-diamonds and graphenes at the nanoscale, all the way to template- and pattern-free synthesis of large, highly ordered arrays of nanostructures at millimetre and even centimetre scales. We will outline the key enabling features of plasmas that drive these processes at respective scales, focusing predominantly on plasma-induced electric fields at the surface or in the plasma-nanostructure sheath, as well as charge-related effects. The outlook section summarizes advantages of plasma-driven self-organization, and outlines principal challenges and opportunities for the development of this field.

Graphical abstract: From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring

Article information

Article type
Review Article
Submitted
19 Mar 2018
Accepted
13 Jun 2018
First published
18 Jun 2018

Mater. Horiz., 2018,5, 765-798

From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring

O. Baranov, I. Levchenko, J. M. Bell, J. W. M. Lim, S. Huang, L. Xu, B. Wang, D. U. B. Aussems, S. Xu and K. Bazaka, Mater. Horiz., 2018, 5, 765 DOI: 10.1039/C8MH00326B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements