Issue 10, 2018

Ultraviolet sensing using a TiO2 nanotube integrated high resolution planar microwave resonator device

Abstract

This paper presents a unique integrated UV light sensing concept and introduces a device with a detection limit of 1.96 nW cm−2. The combination of a high quality factor, a microwave planar resonator (Q ∼ 50 000) with a semiconducting nanomaterial enables a revolutionary potential paradigm for photodetection of low light intensities and small form factors. The presenting device employs a high-resolution microwave microstrip resonator as the signal transducer to convert the variant dielectric properties (permittivity and conductivity) of the nanotube membrane into electrical signals such as the resonant frequency, quality factor and resonant amplitude. The microwave resonator has an active feedback loop to improve the initial quality factor of the resonator from 200 to 50 000 and leads to boosting of the sensing resolution by orders of magnitude. Anatase TiO2 nanotubes are assembled on the surface of the microwave resonator. Upon exposure to UV light, electron–hole pair generation, trapping and recombination in the nanotubes are exploited as a unique signature to quantify the UV light intensity. The change of dielectric properties of the nanotube membrane is monitored using the underlying active microwave resonator. The proposed concept enables the detection and monitoring of UV light at high resolution, with very small exposure power and integrated form factors.

Graphical abstract: Ultraviolet sensing using a TiO2 nanotube integrated high resolution planar microwave resonator device

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2017
Accepted
24 Jan 2018
First published
25 Jan 2018

Nanoscale, 2018,10, 4882-4889

Ultraviolet sensing using a TiO2 nanotube integrated high resolution planar microwave resonator device

M. H. Zarifi, B. Wiltshire, N. Mahdi, P. Kar, K. Shankar and M. Daneshmand, Nanoscale, 2018, 10, 4882 DOI: 10.1039/C7NR06869G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements