Issue 6, 2018

Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes

Abstract

Molecule encapsulation inside the single-walled carbon nanotube (SWCNT) core has been demonstrated to be a successful route for the modification of nanotube properties. SWCNT diameter-dependent filling results in band gap modification together with the enhancement of photoluminescence quantum yield. However, the interaction between the inner structure and the outer shell is complex. It depends on the orientation of the molecules inside, the geometry of the host nanotube and on several other mechanisms determining the resulting properties of the hybrid nanosystem. In this work we study the influence of encapsulated graphene nanoribbons on the optical properties of the host single-walled carbon nanotubes. The interplay of strain and dielectric screening caused by the internal environment of the nanotube affects its band gap. The photoluminescence of the filled nanotubes becomes enhanced when the graphene nanoribbons are polymerized inside the SWCNTs at low temperatures. We show a gradual photoluminescence quenching together with a selective signal enhancement for exact nanotube geometries, specifically (14,6) and (13,8) species. A precise adjustment of the optical properties and an enhancement of the photoluminescence quantum yield upon filling for nanotubes with specific diameters were assigned to optimal organization of the inner structures.

Graphical abstract: Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2017
Accepted
28 Dec 2017
First published
29 Dec 2017

Nanoscale, 2018,10, 2936-2943

Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes

A. I. Chernov, P. V. Fedotov, H. E. Lim, Y. Miyata, Z. Liu, K. Sato, K. Suenaga, H. Shinohara and E. D. Obraztsova, Nanoscale, 2018, 10, 2936 DOI: 10.1039/C7NR07054C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements