Issue 6, 2018

Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery

Abstract

The precise and selective delivery of chemodrugs into tumors represents a critical requirement for anti-cancer therapy. Intelligent delivery systems that are responsive to a single internal or external stimulus often lack sufficient cancer selectivity, which compromises the drug efficacy and induces undesired side effects. To overcome this dilemma, we herein report a cancer-targeting vehicle which allows highly cancer-selective drug release in response to cascaded external (light) and internal (hypoxia) dual triggers. In particular, doxorubicin (DOX)-loaded, hypoxia-dissociable nanoparticles (NPs) were prepared from self-assembled polyethylenimine-nitroimidazole (PEI-NI) micelles that were further co-assembled with hyaluronic acid-Ce6 (HC). Upon accumulation in tumor cells, tumor site-specific light irradiation (660 nm, 10 mW cm−2) generated high levels of reactive oxygen species (ROS) and greatly enhanced the hypoxic levels to induce NP dissociation and accordingly DOX release. A synergistic anti-cancer efficacy between DOX-mediated chemotherapy and Ce6-mediated photodynamic therapy (PDT) was thus achieved, resulting in reduced side effects to normal tissues/cells. This study therefore provides an effective method to control the cancer-specific drug delivery by responding to cascaded multiple triggers, and it renders promising applications for the programmed combination of chemotherapy and PDT toward cancer treatment.

Graphical abstract: Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
15 Oct 2017
Accepted
25 Dec 2017
First published
27 Dec 2017

Nanoscale, 2018,10, 2856-2865

Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery

H. He, R. Zhu, W. Sun, K. Cai, Y. Chen and L. Yin, Nanoscale, 2018, 10, 2856 DOI: 10.1039/C7NR07677K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements