Issue 12, 2018

Fully printed high performance humidity sensors based on two-dimensional materials

Abstract

Fully printed humidity sensors based on two-dimensional (2D) materials are described. Monolayer graphene oxide (GO) and few-layered black phosphorus (BP) flakes were dispersed in low boiling point solvents suitable for inkjet printing. The humidity sensors were fabricated by printing GO and BP sensing layers on printed silver nanoparticle electrodes. The electrical response of the GO and BP sensors to humidity levels ranges from 11 to 97% relative humidity, which revealed a high capacitance sensitivity of 4.45 × 104 times for the GO sensor and 5.08 × 103 times for the BP sensor at 10 Hz operation frequency. Response/recovery times of the GO and BP sensor were found to be 2.7/4.6 s and 4.7/3.0 s respectively. These sensors also showed sensitive and fast response to a proximal human fingertip, showing potential applications in contactless switching.

Graphical abstract: Fully printed high performance humidity sensors based on two-dimensional materials

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2017
Accepted
15 Feb 2018
First published
15 Feb 2018

Nanoscale, 2018,10, 5599-5606

Fully printed high performance humidity sensors based on two-dimensional materials

P. He, J. R. Brent, H. Ding, J. Yang, D. J. Lewis, P. O'Brien and B. Derby, Nanoscale, 2018, 10, 5599 DOI: 10.1039/C7NR08115D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements