Issue 4, 2018

Self-assembly of (boron-dipyrromethane)-diphenylalanine conjugates forming chiral supramolecular materials

Abstract

Herein, we present the synthesis of a series of boron-dipyrromethane (BDP) derivatives bearing diphenylalanine (FF) at their meso position via amide bond coupling. The BDP-FF bioconjugates are able to form self-assembled materials with different morphologies. By altering various parameters such as the protecting group of the FF peptide or the solvent system of the self-assembly process, we were able to obtain either fibrillar or spherical nanostructures. Furthermore, we confirmed that both the formation as well as the dissociation of the self-assemblies is a reversible procedure that can be achieved by simply altering the solvent mixture. Electronic circular dichroism (ECD) studies demonstrated a characteristic mirror image relationship regarding the FLFL and FDFD enantiomers, revealing the chiral nature of the obtained materials. Interestingly, an intense excitonic bisignate signal was observed in the ECD spectrum of the fibrillar structures, whereas the spherical assemblies remained ECD silent. What is more, the electronic circular dichroism studies were supported by quantum chemical calculations.

Graphical abstract: Self-assembly of (boron-dipyrromethane)-diphenylalanine conjugates forming chiral supramolecular materials

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2017
Accepted
19 Dec 2017
First published
19 Dec 2017

Nanoscale, 2018,10, 1735-1741

Self-assembly of (boron-dipyrromethane)-diphenylalanine conjugates forming chiral supramolecular materials

K. Karikis, A. Butkiewicz, F. Folias, G. Charalambidis, C. Kokotidou, A. Charisiadis, V. Nikolaou, E. Nikoloudakis, J. Frelek, A. Mitraki and A. G. Coutsolelos, Nanoscale, 2018, 10, 1735 DOI: 10.1039/C7NR08667A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements