Issue 11, 2018

Fabrication of sub-nanometer pores on graphene membrane for ion selective transport

Abstract

The ability to sieve ions through nanopores with high throughput has significant importance in seawater desalination and other separation applications. In this study, a plasma etching process has been demonstrated to be an efficient way to produce high-density nanopores on graphene membranes with tunable size in the sub-nanometer range. Besides the pore size, the nanopore density is also controllable through adjusting the exposure time of the sample to argon or oxygen plasma. The plasma-treated graphene membranes can selectively transport protons, Na+ and Cl ions. Density function theory calculations uncover that the sp3 and vacancy-type defects construct different energy barriers for different ions, which allow the defected graphene membrane to selectively transport ions. Our study indicates that oxygen plasma etching can be used as a very convenient and efficient method for fabricating a monolayer filtration graphene membrane with tunable sub-nanometer pores.

Graphical abstract: Fabrication of sub-nanometer pores on graphene membrane for ion selective transport

Supplementary files

Article information

Article type
Paper
Submitted
03 Jan 2018
Accepted
19 Feb 2018
First published
20 Feb 2018

Nanoscale, 2018,10, 5350-5357

Fabrication of sub-nanometer pores on graphene membrane for ion selective transport

H. Qi, Z. Li, Y. Tao, W. Zhao, K. Lin, Z. Ni, C. Jin, Y. Zhang, K. Bi and Y. Chen, Nanoscale, 2018, 10, 5350 DOI: 10.1039/C8NR00050F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements