Issue 19, 2018

A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm

Abstract

Optical bioimaging that works in the second near infrared region (NIR-II, 1000–1700 nm) has emerged as a next generation imaging technique with superior imaging sensitivity and spatial resolution compared to traditional optical imaging utilizing visible and near-infrared lights (below 900 nm). Herein, a new Sc-based NIR-II probe was explored for high performance NIR-II in vivo bioimaging and optical imaging-guided non-invasive brain blood vessel visualization. The lanthanide doped Sc-based probes (KSc2F7:Yb3+/Er3+) possess a pure orthorhombic phase structure with size control by adjusting the F ion content. These probes present a dominant red upconversion (UC) emission, which is significantly different from the traditional NaYF4:Yb/Er host, which usually has a green UC emission. More importantly, apart from the dominant red UC emission, these probes also possess a strong NIR-II downconversion (DC) emission centered at 1525 nm, which is usually ignored for bioimaging applications. In vivo NIR-II imaging reveals that our explored Sc-based nanorods are promising probes for highly sensitive optical imaging. Moreover, non-invasive through-skull fluorescence bioimaging of brain vessels with high spatial resolution was demonstrated. Therefore, it is expected that Sc-based nanomaterials with unique dominant red UC and DC NIR-II emissions beyond 1500 nm are ideal probes for bio-applications.

Graphical abstract: A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2018
Accepted
22 Apr 2018
First published
25 Apr 2018

Nanoscale, 2018,10, 9393-9400

A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm

Z. Deng, X. Li, Z. Xue, M. Jiang, Y. Li, S. Zeng and H. Liu, Nanoscale, 2018, 10, 9393 DOI: 10.1039/C8NR00305J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements