Issue 14, 2018

In situ TEM observation of rebonding on fractured silicon carbide

Abstract

Silicon carbide (SiC) is widely used in harsh environments and under extreme conditions, including at high-power, high-temperature, high-current, high-voltage and high-frequency. The rebonding and self-matching of stack faults (SFs) is highly desirable to avoid catastrophic failure for SiC devices, especially for specific applications in the aerospace and nuclear power industries. In this study, a novel approach was developed using an eyebrow hair to pick up and transfer nanowires (NWs), in order to obtain in situ transmission electron microscope (TEM) images of the rebonding and self-matching of SFs at atomic resolution. During rebonding and healing, the electron beam was shut off. Rebonding on the fractured surfaces of monocrystalline and amorphous SiC NWs was observed by in situ TEM at room temperature. The fracture strength was 1.7 GPa after crack-healing, restoring 12.9% of that of a single crystal NW. Partial recrystallization along the <111> orientation and the self-matching of SFs are responsible for the rebonding of the monocrystalline NW. In comparison, the fracture strengths were 6.7 and 5.5 GPa for the first and second rebonding, respectively recovering 67% and 55% of that of an amorphous NW. Atomic diffusion contributed enormously to the rebonding on fractured surfaces of an amorphous NW, resulting in a healed surface consisting of an amorphous phase and crystallites. This rebonding function provides new insight into the fabrication of high-performance SiC devices for the aerospace, optoelectronic and semiconductor industries.

Graphical abstract: In situ TEM observation of rebonding on fractured silicon carbide

Supplementary files

Article information

Article type
Communication
Submitted
13 Jan 2018
Accepted
13 Feb 2018
First published
13 Feb 2018

Nanoscale, 2018,10, 6261-6269

In situ TEM observation of rebonding on fractured silicon carbide

Z. Zhang, J. Cui, B. Wang, H. Jiang, G. Chen, J. Yu, C. Lin, C. Tang, A. Hartmaier, J. Zhang, J. Luo, A. Rosenkranz, N. Jiang and D. Guo, Nanoscale, 2018, 10, 6261 DOI: 10.1039/C8NR00341F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements