Issue 35, 2018

Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO

Abstract

The visualization of the microstructure change and of the depth of lithium transport inside a monolithic ElectroChromic Device (ECD) is realized using an innovative combined approach of Focused Ion Beam (FIB), Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge Optical Emission Spectroscopy (GDOES). The electrochemical and optical properties of the all-thin-film inorganic ECD glass/ITO/WO3/LiTaO3/NiO/ITO, deposited by magnetron sputtering, are measured by cycling voltammetry and in situ transmittance analysis up to 11 270 cycles. A significant degradation corresponding to a decrease in the capacity of 71% after 2500 cycles and of 94% after 11 270 cycles is reported. The depth resolved microstructure evolution within the device, investigated by cross-sectional cutting with FIB, points out a progressive densification of the NiO layer upon cycling. The existence of irreversible Li ion trapping in NiO is illustrated through the comparison of the compositional distribution of the device after various cycles 0, 100, 1000, 5000 and 11 270. SIMS and GDOES depth profiles confirm an increase in the trapped Li content in NiO as the number of cycles increases. Therefore, the combination of lithium trapping and apparent morphological densification evolution in NiO is believed to account for the degradation of the ECD properties upon long term cycling of the ECD.

Graphical abstract: Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
23 May 2018
First published
24 May 2018

Nanoscale, 2018,10, 16521-16530

Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO

D. Dong, W. Wang, A. Rougier, G. Dong, M. Da Rocha, L. Presmanes, K. Zrikem, G. Song, X. Diao and A. Barnabé, Nanoscale, 2018, 10, 16521 DOI: 10.1039/C8NR02267D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements