Issue 44, 2018

Bi2Se3 nanoplates for contrast-enhanced photoacoustic imaging at 1064 nm

Abstract

Photoacoustic (PA) imaging is a high-resolution biomedical imaging modality, which can be used to visualize biological tissues located beyond the limited penetration depth of existing optical imaging techniques. An optical wavelength of 1064 nm is of great interest in PA imaging due to low intrinsic absorption at this wavelength. Reduced absorption implies an increased depth of imaging, which enables several new clinical applications such as bladder imaging, gastrointestinal (GI) imaging, and sentinel lymph node (SLN) imaging. In addition, a 1064 nm Nd:YAG laser system enables a high power, cost-effective, and compact laser-based PA imaging system. However, at this wavelength, due to low intrinsic contrast, high absorption exogenous PA contrast agents are necessary for imaging. To this end, we present new Bi2Se3 nanoplates as PA contrast agents at 1064 nm wavelength for PA imaging. We successfully synthesized Bi2Se3 nanoplates and they exhibited relatively strong PA signals at 1064 nm. We confirmed the increased imaging depth of penetration by imaging the Bi2Se3-containing tube located 4.6 cm deep in biological tissues. We present in vivo PA imaging of the bladder, GI tract, and SLN in mice using a Bi2Se3 contrast agent establishing the clinical feasibility of these agents with a clinical photoacoustic/ultrasound imaging system. Our results confirm that Bi2Se3 nanoplates are promising PA contrast agents at 1064 nm that offer a high optical absorbance in the second NIR region providing a high contrast imaging and increased depth of penetration.

Graphical abstract: Bi2Se3 nanoplates for contrast-enhanced photoacoustic imaging at 1064 nm

Supplementary files

Article information

Article type
Paper
Submitted
02 Jan 2018
Accepted
01 Sep 2018
First published
05 Sep 2018

Nanoscale, 2018,10, 20548-20558

Bi2Se3 nanoplates for contrast-enhanced photoacoustic imaging at 1064 nm

S. Park, G. Park, J. Kim, W. Choi, U. Jeong and C. Kim, Nanoscale, 2018, 10, 20548 DOI: 10.1039/C8NR05672B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements