Customizable 3D-printed architecture with ZnO-based hierarchical structures for enhanced photocatalytic performance†
Abstract
ZnO-based hierarchical structures including nanoparticles (NPs), nanorods (NRs) and nanoflowers (NFs) on a 3D-printed backbone were effectively fabricated via the combination of the fused deposition modelling (FDM) 3D-printing technique and hydrothermal reaction. The photocatalytic performance of the ZnO-based hierarchical structures on the 3D-backbone was verified via the degradation of the organic pollutant methylene blue, which was monitored by UV-vis spectroscopy. The new photocatalytic architectures used in this investigation give an effective approach and wide applicability to overcome the limitation of photocatalysts such as secondary removal photocatalyst processes.