Highly stable and active SERS substrates with Ag–Ti alloy nanorods†
Abstract
Silver (Ag) nanostructures have been intensively studied as one of the most promising surface-enhanced Raman scattering (SERS) substrates; however, their practical applications have been limited by the chemical instability with regard to oxidation, sulfuration and etching of Ag. Therefore, designing and fabricating highly active Ag nanostructures with high SERS stability has been recognized as an important research area. Herein, Ag–Ti alloy nanorods (Ag–Ti alloy NRs) are designed and fabricated by the oblique angle deposition (OAD) method to protect Ag. Taking advantage of the higher chemical activity of Ti compared with Ag, Ti can be sacrificed against oxidation and corrosion, protecting Ag in harsh environments, further ensuring long-term stability of the SERS substrates. It is demonstrated that a 2% Ti (in atoms) substrate possesses extremely high SERS sensitivity, and is stable both in air for more than 1 month and in 10 mM HNO3 solution for 1 hour. The alloy nanostructure provides a new opportunity to achieve highly sensitive and highly stable SERS substrates.