Issue 1, 2018

Microwave-assisted fast synthesis of hierarchical NiCo2O4 nanoflower-like supported Ni(OH)2 nanoparticles with an enhanced electrocatalytic activity towards methanol oxidation

Abstract

NiCo2O4 nanoflowers were synthesized through a microwave-assisted hydrothermal method and used as a type support for Ni(OH)2 nanoparticles. In the three-dimensional NiCo2O4 nanoflowers, two-dimensional ultrathin nanosheets supported the Ni(OH)2 nanoparticles by homogeneous precipitation. The materials were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The electrochemical oxidation of methanol was probed through the NiCo2O4/Ni(OH)2 modification on a glassy carbon electrode in an alkaline medium by employing cyclic voltammetry (CV) and chronoamperometry (CA). The current density of the NiCo2O4/Ni(OH)2 electrode in 1 M KOH with 0.5 M methanol ascends to 92.3 A g−1 and restores to 94.6% of the primitive value through the replacement with a new solution after a long-term CV cycling (500 cycles). Therefore, the compounds further corroborate their excellent electrocatalytic activity and superb perennial stability for methanol oxidation. This study demonstrates that NiCo2O4/Ni(OH)2 is a peculiar material with an outstanding performance in direct methanol fuel cells.

Graphical abstract: Microwave-assisted fast synthesis of hierarchical NiCo2O4 nanoflower-like supported Ni(OH)2 nanoparticles with an enhanced electrocatalytic activity towards methanol oxidation

Supplementary files

Article information

Article type
Research Article
Submitted
21 Sep 2017
Accepted
08 Nov 2017
First published
10 Nov 2017

Inorg. Chem. Front., 2018,5, 172-182

Microwave-assisted fast synthesis of hierarchical NiCo2O4 nanoflower-like supported Ni(OH)2 nanoparticles with an enhanced electrocatalytic activity towards methanol oxidation

B. Wang, Y. Cao, Y. Chen, R. Wang, X. Wang, X. Lai, C. Xiao, J. Tu and S. Ding, Inorg. Chem. Front., 2018, 5, 172 DOI: 10.1039/C7QI00583K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements