Issue 4, 2018, Issue in Progress

Novel insensitive energetic-cocrystal-based BTO with good comprehensive properties

Abstract

Combining a layer construction strategy with cocrystallization techniques, we designed and prepared a structurally unusual 1H,1′H-5,5′-bistetrazole-1,1′-diolate (BTO) based energetic cocrystal, which we also confirmed by single-crystal X-ray diffraction and powder-crystal X-ray diffraction. The obtained cocrystal crystallizes in a triclinic system, P-1 space group, with a density of 1.72 g cm−3. The properties including the thermal stability, sensitivity and detonation performance of the cocrystal were analyzed in detail. In addition, the thermal decomposition behavior of the cocrystal was studied by differential calorimetry and thermogravimetry tandem infrared spectroscopy. The results indicated that the cocrystal exhibits strong resistance to thermal decomposition up to 535.6 K. The cocrystal also demonstrates a sensitivity of >50 J. Moreover, its formation enthalpy was estimated to be 2312.0 kJ mol−1, whereas its detonation velocity and detonation pressure were predicted to be 8.213 km s−1 and 29.1 GPa, respectively, by applying K–J equations. Therefore, as expected, the obtained cocrystal shows a good comprehensive performance, which proves that a high degree of layer-by-layer stacking is essential for the structural density, thermal stability and sensitivity.

Graphical abstract: Novel insensitive energetic-cocrystal-based BTO with good comprehensive properties

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2017
Accepted
26 Dec 2017
First published
08 Jan 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 1784-1790

Novel insensitive energetic-cocrystal-based BTO with good comprehensive properties

J. Tao, B. Jin, S. Chu, R. Peng, Y. Shang and B. Tan, RSC Adv., 2018, 8, 1784 DOI: 10.1039/C7RA11428A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements