Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1−xCuxO3 influence on structural, magnetic and magnetocaloric effects
Abstract
Bulk nanocrystalline samples of La0.65Ce0.05Sr0.3Mn1−xCuxO3 (0 ≤ x ≤ 0.15) manganites are prepared by the sol–gel based Pechini method. The effect of the substitution for Mn with Cu upon the structural and magnetic properties has been investigated by means of X-ray diffraction (XRD), Raman spectroscopy and dc magnetization measurements. The structural parameters obtained using Rietveld refinement of XRD data showed perovskite structures with rhombohedral (Rc) symmetry without any detectable impurity phase. Raman spectra at room temperature reveal a gradual change in phonon modes with increasing copper concentration. The analysis of the crystallographic data suggested a strong correlation between structure and magnetism, for instance a relationship between a distortion of the MnO6 octahedron and the reduction in the Curie temperature, Tc. A paramagnetic to ferromagnetic phase transition at TC is observed. The experimental results confirm that Mn-site substitution with Cu destroys the Mn3+–O2−–Mn4+ bridges and weakens the double exchange (DE) interaction between Mn3+ and Mn4+ ions, which shows an obvious suppression of the FM interaction in the La0.65Ce0.05Sr0.3Mn1−xCuxO3 matrix. The maximum magnetic entropy change −ΔSmaxM is found to decrease with increasing Cu content from 4.43 J kg−1 K−1 for x = 0 to 3.03 J kg−1 K−1 for x = 0.15 upon a 5 T applied field change.