Synthesis of highly stable γ-Fe2O3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications
Abstract
This article aims at the synthesis of highly stable γ-Fe2O3 magnetic nanoparticles and their ferrofluids using different base liquids such as liquid paraffin, motor oil and sunflower oil for heat transfer applications. Phase and morphology of the synthesized nanoparticles were probed using XRD, SEM and FTIR spectroscopy. The average nanoparticle size of γ-Fe2O3 magnetic nanoparticles was found to be 13 nm. Stability of the ferrofluids was monitored by visually observing the aggregation nature of the nanoparticles for 180 days. The ferrofluid prepared using motor oil as a base fluid exhibited high stability (for more than 1 year) and a mean enhancement of 77% in thermal conductivity at 1.5 vol% nanoparticles was observed as compared to base fluid. The viscosity of the ferrofluids was also measured and found to be 18, 38 and 8 cP at 27 °C for the liquid paraffin based, motor oil based and sunflower oil based ferrofluid, respectively.