Issue 17, 2018, Issue in Progress

Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery

Abstract

Yolk–shell structure is considered to be a well-designed structure of silicon-based anode. However, there is only one point (point-to-point contact) in the contact region between the silicon core and the shell in this structure, which severely limits the ion transport ability of the electrode. In order to solve this problem, it is important that the core and shell of the core–shell structure are closely linked (face-to-face contact), which ensures good ion diffusion ability. Herein, a double core–shell nanostructure (Si@C@SiO2) was designed for the first time to improve the cycling performance of the electrode by utilising the unique advantages of the SiO2 layer and the closely contacted carbon layer. The improved cycling performance was evidenced by comparing the cycling properties of similar yolk–shell structures (Si@void@SiO2) with equal size of the intermediate shell. Based on the comparison and analysis of the experimental data, Si@C@SiO2 had more stable cycling performance and exceeded that of Si@void@SiO2 after the 276th cycle. More interestingly, the electron/ion transport ability of electrode was further improved by combination of Si@C@SiO2 with reduced graphene oxide (RGO). Clearly, at a current density of 500 mA g−1, the reversible capacity was 753.8 mA h g−1 after 500 cycles, which was 91% of the specific capacity of the first cycle at this current density.

Graphical abstract: Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2017
Accepted
09 Feb 2018
First published
01 Mar 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 9094-9102

Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery

P. Wu, C. Guo, J. Han, K. Yu, X. Dong, G. Yue, H. Yue, Y. Guan and A. Liu, RSC Adv., 2018, 8, 9094 DOI: 10.1039/C7RA13606D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements