Issue 14, 2018, Issue in Progress

Morphology and pervaporation performance of ionic liquid and waterborne polyurethane composite membranes

Abstract

Blending an aromatic-selective ionic liquid (IL, namely 1-ethyl-3-methylimidazolium hexafluorophosphate, [emim][PF6]) with waterborne polyurethane (WPU) enabled us to obtain [emim][PF6]-modified waterborne polyurethane composite membranes. We characterized the structure and properties of the [emim][PF6]/WPU composite membranes by ATR-FTIR, DSC, UV, SEM, EDX, swelling tests, and pervaporation testing. Characterization of the change in the morphology of the membranes in response to the IL loading indicated that a preferential interaction between the IL and soft segments of WPU was induced by hydrogen bonding. This interaction inhibited a potential interaction with benzene (Bz), which initially lowered the permeability. However, at high IL loading, the IL incorporation became ineffective owing to macrophase separation, which caused an increase in the permeability, as indicated by the SEM results. Swelling testing of the [emim][PF6]/WPU composite membranes showed that the membranes exhibited preferential adsorption of Bz, and the swelling degree of the composite membranes in Bz solvent increased from 58% to 98% and remained almost constant in cyclohexane solvent as the IL content was increased. The [emim][PF6]/WPU composite membranes enhanced the separation selectivity of Bz/Cy for an IL loading < 10 wt%. The best separation factor was 8.4, and the total flux was 0.19 kg (m2 h)−1 (50 wt% Bz/Cy mixtures at 50 °C) at w([emim][PF6]) : w(WPU) = 10 : 100. In addition, the composite membrane exhibited excellent stability over long-term operation. These results demonstrated that the [emim][PF6]/WPU composite membranes could be effective for separation of Bz/Cy mixtures by the pervaporation method.

Graphical abstract: Morphology and pervaporation performance of ionic liquid and waterborne polyurethane composite membranes

Supplementary files

Article information

Article type
Paper
Submitted
02 Jan 2018
Accepted
12 Feb 2018
First published
19 Feb 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 7792-7799

Morphology and pervaporation performance of ionic liquid and waterborne polyurethane composite membranes

T. Xi, L. Tang, W. Hao, L. Yao and P. Cui, RSC Adv., 2018, 8, 7792 DOI: 10.1039/C7RA13761C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements