Issue 25, 2018, Issue in Progress

Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate

Abstract

Organic–inorganic hybrid halide perovskites have attracted great attention as a new type of photovoltaic materials. However, lead (Pb) perovskite solar cells (PSCs) would cause environmental pollution in future large-scale applications. Therefore, it is imperative to find environmentally-friendly metals to replace lead. Although tin (Sn) halide perovskites can be regarded as a valid alternative to lead perovskites, their poor stability and lower conversion efficiency hinder the substitution of Sn for Pb. In this work, highly uniform and pinhole-free perovskite films were prepared by the introduction of a small amount of lead thiocyanate in precursor solutions. The CH3NH3SnI3 (MASnI3) films with Pb additive show an absorption edge of 950 nm. Besides, lead ions can depress the LUMO energy level of Sn-based perovskite materials, which is a benefit to an increase in the opencircuit voltages of PSCs. Consequently, the enhanced performance was achieved in the PSCs based on MASnI3 with a fill factor of 66%, open circuit voltage of 0.54 V and maximum power conversion efficiency of 6.03%.

Graphical abstract: Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2018
Accepted
02 Apr 2018
First published
16 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 14025-14030

Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate

F. Gao, C. Li, L. Qin, L. Zhu, X. Huang, H. Liu, L. Liang, Y. Hou, Z. Lou, Y. Hu and F. Teng, RSC Adv., 2018, 8, 14025 DOI: 10.1039/C8RA00809D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements