Issue 26, 2018, Issue in Progress

Dinuclear molecular magnets with unblocked magnetic connectivity: magnetocaloric effect

Abstract

A detailed study of the magnetocaloric effect in two isostructural bimetallic compounds {[MII(H2O)2]2[NbIV(CN)8]·4H2O}n (M = Mn, Fe) is presented. The substances show sharp phase transitions to the long-range magnetically ordered state with ferromagnetic coupling between M and Nb sublattices in the case of the Fe-based sample (FeNb, Tc = 43 K) and antiferromagnetic coupling for the Mn-based sample (MnNb, Tc = 50 K). The magnetic entropy change was found to reach 5.07 J mol−1 K−1 (9.09 J kg−1 K−1) for MnNb and 4.82 J mol−1 K−1 (8.65 J kg−1 K−1) for FeNb under the applied magnetic field change of 5 T. Isothermal entropy changes corresponding to different field changes are demonstrated to collapse on a single master curve, which confirms the magnetic transitions in FeNb and MnNb to be of the second order. The results obtained for FeNb and MnNb are discussed in the context of MCE tunability by un/blocking of magnetic connectivity through dis/reconnection of spatially extended ligands.

Graphical abstract: Dinuclear molecular magnets with unblocked magnetic connectivity: magnetocaloric effect

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2018
Accepted
12 Apr 2018
First published
18 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 14640-14645

Dinuclear molecular magnets with unblocked magnetic connectivity: magnetocaloric effect

M. Fitta, R. Pełka, W. Sas, D. Pinkowicz and B. Sieklucka, RSC Adv., 2018, 8, 14640 DOI: 10.1039/C8RA01609G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements