Issue 29, 2018, Issue in Progress

Sustainable synthesis of nanoporous carbons from agricultural waste and their application for solid-phase microextraction of chlorinated organic pollutants

Abstract

To guarantee the safety of water resources for humans, there is a high demand for the development of highly-efficient probes for solid-phase microextraction and analysis of trace organic pollutants. In this work, we greenly synthesized nanoporous carbons (NPCs) from oilseed rape straw via a facile hydrothermal treatment and potassium bicarbonate activation. Results showed that the NPCs had partly graphitic, amorphous-like structures with a high surface area (up to 1253 m2 g−1), large pore volume (up to 0.71 cm3 g−1), high mesopore to total pore volume ratio (up to 29%) and great thermal stability (>400 °C). When the NPCs were utilized as a solid-phase microextraction fiber coating, the extraction efficiencies for chlorinated organic pollutants (COPs) were higher (1–38 times) than with a common commercial polydimethylsiloxane coating because of high surface adsorption energy, strong π–π stacking interactions and large mass transfer capacity. Using the most efficient NPC-8 coating, under optimum extraction conditions (desorption temperature, 290 °C; extraction temperature, 80 °C; extraction time, 25 min), an analysis method for trace COPs in water was developed with good linearity (0.9991–0.9998), high sensitivity (limits of detections, 0.08–0.64 ng L−1), acceptable repeatability (RSDs of single fiber, 2.63–6.73%) and great reproducibility (RSDs of fiber-to-fiber, 2.22–7.12%). Finally, the NPC-8 coating was applied to a real environmental sample with satisfactory recoveries (86.66–103.27%).

Graphical abstract: Sustainable synthesis of nanoporous carbons from agricultural waste and their application for solid-phase microextraction of chlorinated organic pollutants

Supplementary files

Article information

Article type
Paper
Submitted
10 Mar 2018
Accepted
24 Apr 2018
First published
30 Apr 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 15915-15922

Sustainable synthesis of nanoporous carbons from agricultural waste and their application for solid-phase microextraction of chlorinated organic pollutants

H. Cheng, Y. Song, Y. Bian, R. Ji, F. Wang, C. Gu, X. Yang and X. Jiang, RSC Adv., 2018, 8, 15915 DOI: 10.1039/C8RA02123F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements