Template-free synthesis of monolithic carbon xerogels with hierarchical porosity from resorcinol and formaldehyde via hydrothermal reaction†
Abstract
Monolithic carbon xerogels with hierarchical porosity were prepared from resorcinol (R) and formaldehyde (F) via a base-catalysed hydrothermal polycondensation reaction, without a template and supercritical drying. First, an aqueous solution of resorcinol, formaldehyde and sodium carbonate was prepared by varying R/W (25–45) and R/C (1–10k) ratios to produce monolithic RF gels. The reaction was carried out in a pressurized Teflon mould at 100 °C for 6 h to give a co-continuous pore structure via spinodal decomposition and a tenacious gel to avoid supercritical drying. Next, the RF gels were dried for 42 h at 60 °C and another 6 h at 100 °C to produce RF xerogels without cracks, followed by pyrolysis in a tube furnace at 900 °C for 2 h under N2 flow, and then activation at 1000 °C for 2, 4 or 6 h under CO2 flow. Finally, the carbon xerogels were characterized by SEM and N2 adsorption–desorption measurements. Monolithic RF gels were obtained from all combinations of R/W and R/C, but the gels from R/W = 45 exhibited a co-continuous large-pore structure, providing a specific surface area (SSA) of ∼650 m2 g−1, which increased to 3311 m2 g−1 (for R/C = 10k) at 6 h of CO2 activation without exhibiting cracks. N2 isotherms demonstrated that micro- and meso-pores were introduced via activation, forming hierarchical porosity in combination with large pores from spinodal decomposition without using a template.