Flake-like InVO4 modified TiO2 nanofibers with longer carrier lifetimes for visible-light photocatalysts
Abstract
Highly efficient solar light absorption capabilities and quantum yields in photocatalysts are key to their application in photocatalytic fields. Towards this end, TiO2/InVO4 nanofibers (NFs) have been designed and fabricated successfully by a one-pot electrospinning process. The resulting TiO2/InVO4 NFs display excellent visible-light photocatalytic activity, owing to their prominent visible-light absorption and electron–hole separation properties. Time-resolved transient PL spectroscopy demonstrated that the TiO2/InVO4 NFs display longer emission decay times (22.0 ns) compared with TiO2 NFs (15.5 ns), implying that the heterojunction can remarkably suppress the electron–hole recombination and promote the carrier transfer efficiency. With tailored heterostructure features, TiO2/InVO4 NFs exhibit superior visible-light photodegradation activity, and after 80 min of visible-light irradiation, almost 95% of RhB molecules can be decomposed by TiO2/InVO4 NFs, while only 18% of RhB molecules can be decomposed by pure TiO2 NFs.