Issue 51, 2018, Issue in Progress

Exploring the nature of the clopidogrel–bromocresol green interaction via spectrophotometric measurements and quantum chemical calculations

Abstract

Clopidogrel is an oral, thienopyridine class antiplatelet agent used to inhibit blood clots in coronary arteries, peripheral vascular and cerebrovascular diseases. A spectrophotometric method was developed for clopidogrel bisulfate (CLOP·H2SO4) determination using bromocresol green (BCG) as an ion-pairing agent. To explore the binding nature of CLOP·H2SO4 with BCG at a molecular level, quantum chemical calculations have been performed. DFT based full geometry optimization has been carried out for BCG and clopidogrel in basic (CLOP) and protonated (CLOP+) forms as well as for BCG ion-pairs with CLOP and CLOP·H2SO4. The DFT calculations referred to the stability of the BCG–CLOP+ ion-pair and its spontaneous formation reaction from BCG and CLOP·H2SO4 compared to the BCG–CLOP-ion-pair. Furthermore, the UV-visible spectra and their corresponding excited states and electronic transitions for BCG, BCG–CLOP+ ion-pair, and BCG–CLOP ion-pair have been investigated. These spectra provided a molecular level understanding of the nature of the different intra-molecular and intermolecular electronic transitions in the BCG ion-pairs with CLOP+. Moreover, the quantitative analysis based on extracting a yellow-formed ion-pair into chloroform from aqueous medium was carried out. The ion-pair exhibits an absorption maximum at 413 nm. The optimum conditions of the reactions were studied experimentally and optimized. The calibration graph shows that CLOP·H2SO4 can be determined up to 100.0 μg mL−1 with detection limit (LOD) of 0.57 μg mL−1 and quantification limit (LOQ) of 1.86 μg mL−1. The low relative standard deviation values, 0.16–1.16, indicate good precision. The results were compared to other published data and were treated statistically using F and t-tests.

Graphical abstract: Exploring the nature of the clopidogrel–bromocresol green interaction via spectrophotometric measurements and quantum chemical calculations

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2018
Accepted
08 Aug 2018
First published
15 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 29104-29114

Exploring the nature of the clopidogrel–bromocresol green interaction via spectrophotometric measurements and quantum chemical calculations

S. H. Mohamed, A. I. Magdy and A. A. Ahmed, RSC Adv., 2018, 8, 29104 DOI: 10.1039/C8RA05187A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements