Issue 52, 2018

Composition design, electrical properties, and temperature stability in (1 − x)K0.44Na0.56Nb0.96Sb0.04O3-xBi0.45La0.05Na0.5ZrO3 lead-free ceramics

Abstract

In this work, we designed a new system of (1 − x)K0.44Na0.56Nb0.96Sb0.04O3-xBi0.45La0.05Na0.5ZrO3 (KNNS-xBLNZ, 0 ≤ x ≤ 0.06) ceramics, and systemically investigated both their electrical performance and temperature stability. Through optimizing the composition, a relatively good comprehensive performance (e.g., d33 ∼ 455 ± 10 pC N−1, kp ∼ 0.47 ± 0.02, TC ∼ 266 °C, strain ∼ 0.148%, and Image ID:c8ra06183a-t1.gif) is obtained in the ceramics with x = 0.040, which is attributed to the construction of a rhombohedral–orthorhombic–tetragonal (R–O–T) phase boundary. Moreover, a good temperature stability of remnant polarization (Pr) as well as strain value (Pr100 °C/PrRT ∼ 89.6%, Pr180 °C/PrRT ∼ 73.2%, S100 °C/SRT ∼ 92.6%, S180 °C/SRT ∼ 74.1%) is gained in KNNS-0.040BLNZ ceramics with a broad temperature range from room temperature to 180 °C. Hence, we believe that KNNS-xBLNZ ceramics opens a window for the practical application of lead-free ceramics.

Graphical abstract: Composition design, electrical properties, and temperature stability in (1 − x)K0.44Na0.56Nb0.96Sb0.04O3-xBi0.45La0.05Na0.5ZrO3 lead-free ceramics

Associated articles

Article information

Article type
Paper
Submitted
21 Jul 2018
Accepted
17 Aug 2018
First published
23 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 29871-29878

Composition design, electrical properties, and temperature stability in (1 − x)K0.44Na0.56Nb0.96Sb0.04O3-xBi0.45La0.05Na0.5ZrO3 lead-free ceramics

J. Ma, J. Wu and B. Wu, RSC Adv., 2018, 8, 29871 DOI: 10.1039/C8RA06183A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements