Zipping assembly of an Fe3O4/carbon nanosheet composite as a high-performance supercapacitor electrode material
Abstract
Reasonable structure design and component selection are crucial to electrochemical performance of supercapacitor electrode materials. Sodium alginate (SA), with a novel structure which can immobilize multivalent metal cations, was used to coordinate with Fe3+ to fabricate a carbon and Fe3O4 composite by an easy sol–gel method. Due to the chelation effect between SA and Fe3+, the carbon composite was constructed into a two-dimensional sheet-like structure, and the Fe3O4 particles were nanosize and homogenously distributed on the surface of the carbon nanosheet. As an electrode material for supercapacitors, the composite electrode showed a high specific capacitance of 550 F g−1 at 1 A g−1 in the potential range from −1.1 to 0 V, and excellent cycling stability of 89% retention after 2000 cycles. The enhanced electrochemical performance could be attributed to the abundant exposed active sites, producing high pseudocapacitance, to the two-dimensional nanosheet structure, facilitating electrolyte transport and to the strong attachment strength, improving cycle life. This environmentally-friendly design can provide an alternative to existing methods, resulting in the development of a two-dimensional carbon/metal oxide composite for energy storage devices.