Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs†
Abstract
Facile synthesis of micellar “nano” indole heterocyclic anti-cancer compounds is described. The synthesized compounds (11–23) were characterized by UV-VIS, 1H NMR, FT-IR and mass spectroscopy. The binding energies of DNA–compound adducts varied from −20.08 to −23.85 kJ mol−1, and they were stabilized by hydrophobic interactions and H-bonding. The synthesized compounds enter into minor grooves of DNA during adduct formation. The DNA binding constant of compounds 11–23 was 1.00 to 2.00 × 105 M−1. The drug-loading efficiency and drug-loading content in their micellar forms were recorded. Compounds 11, 12, 14 and 19 at a micellar concentration of 670 μL mL−1 displayed excellent anticancer activities against the HepG2/C3A line (25–50%). The potency of nano anticancer drugs was predicted by drug likeness using Lipinski's “rule of five”. Taken together, compounds 11–23 could be used to treat cancers.