In vitro and in vivo evaluations of mechanical properties, biocompatibility and osteogenic ability of sintered porous titanium alloy implant
Abstract
A new sintering technique using Ti6Al4V powder suspension was performed to prepare porous Ti6Al4V alloys. The porous alloys could be fabricated with different porosities and pore sizes by controlling the quantity and size of spacer particles added to the Ti6Al4V powder. The characteristics and biological properties of the porous Ti6Al4V with two different porosities were evaluated by mechanical tests, cell tests and implantation. Dense Ti6Al4V was used as the control. Compared with the control group, the porous Ti6Al4V showed good biocompatibility and osteogenic ability, which makes this type of porous alloy a good prospective material for biomedical application. And compared with 50% porosity, the alloy with 75% porosity had the optimal mechanical properties, and suitable pore size and porosity, which allowed more bone ingrowth.