Issue 71, 2018

Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions

Abstract

The potential toxicity and irreversibility of radionuclide Cs place severe pressure on the natural environment, which has become one of the most forefront pollution problems in nuclear energy utilization. To solve this problem, novel self-assembled membranes consisting of two-dimensional (2D) metal–organic frameworks (MOFs) and graphene oxide (GO) were prepared by a facile filtration method, which can efficiently absorb Cs+ from aqueous solutions. The batch experimental results showed that the sorption of Cs+ on the GO/Co-MOF composite membrane was strongly dependent on the addition mass and the membrane compositions. Thus, the dominant interaction mechanism was interface or surface complexation and electrostatic interaction. The maximum sorption efficiency of Cs+ on GO/Co-MOF was 88.4% with 8 mg addition mass at pH = 7.0 and 299 K. Detailed FT-IR and XPS analyses suggested that the efficient synergistic effects in the unique architectures of GO/Co-MOF play an important role in the high sorption capacity of Cs+. The facile preparation method and the highly-efficient Cs+ removal behaviour of GO/Co-MOF make the novel membrane a promising candidate for the elimination of radionuclide contamination.

Graphical abstract: Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2018
Accepted
26 Nov 2018
First published
05 Dec 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 40813-40822

Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions

J. Cheng, J. Liang, L. Dong, J. Chai, N. Zhao, S. Ullah, H. Wang, D. Zhang, S. Imtiaz, G. Shan and G. Zheng, RSC Adv., 2018, 8, 40813 DOI: 10.1039/C8RA08410F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements