Influence of lithium salt-induced phase separation on thermal behaviors of poly(vinylidene fluoride)/ionic liquid gels and pore/void formation by competition with crystallization†
Abstract
The thermal behavior of poly(vinylidene fluoride)/1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide/lithium bis(trifluoromethylsulfonyl)amide (PVDF/[C2mim][TFSA]/LiTFSA) gels, prepared by cooling from the hot solution, was investigated with various concentrations of LiTFSA (CLiTFSA). The peak melting temperature (Tm) of the gels shifted toward higher temperatures with increased CLiTFSA. However, the thickness of lamellar crystal was found to decrease with the increase in CLiTFSA, which meant that the increase in Tm was not caused by the thickening of lamellar crystal. Furthermore, we found the appearance of domains above Tm in the high CLiTFSA region (≥20 wt%), which was a lithium ion-rich phase caused by the phase separation. Therefore, it is considered on the basis of Nishi–Wang equation that an increase in the interaction parameter with increasing CLiTFSA toward the phase separation increased the Tm. The phase-separated domains competed with the subsequent crystallization, which resulted in the formation of micrometer-sized pores and nanometer-sized voids in the spherulites. Spectral measurements revealed that PVDF was not specifically solvated in the solution state above the crystallization temperature, while [TFSA]− anion formed a complex with lithium ion irrespective of the PVDF content. These results led to the consideration that an increase in the interaction parameter might be caused by the strong interaction between lithium ion and [TFSA]− anion to form the complex, which would also lower the interaction between PVDF and [TFSA]− anion.