Issue 72, 2018

Si nanocrystal solution with stability for one year

Abstract

Colloidal silicon nanocrystals (SiNCs) are a promising material for next-generation nanostructured devices. High-stability SiNC solutions are required for practical use as well as studies on the properties of SiNC. Here, we show a solution of SiNCs that was stable for one year without aggregation. The stable solution was synthesized by a facile process, i.e., pulsed laser ablation of a Si wafer in isopropyl alcohol (IPA). The long-term stability was due to a large ζ-potential of −50 mV from a SiNC passivation layer composed of oxygen, hydrogen, and alkane groups, according to the results of eight experiments and theoretical calculations. This passivation layer also resulted in good performance as an additive for a conductive polymer film. Namely, a 5-fold enhancement in carrier density was established by the addition of SiNCs into an organic conductive polymer, poly(3-dodecylthiophene), which is useful for solar cells. Furthermore, it was found that fresh (<1 day) and aged (4 months) SiNCs give the same enhancement. The long-term stability was attributed to a great repulsive energy in IPA, whose value was quantified as a function the distance between SiNCs.

Graphical abstract: Si nanocrystal solution with stability for one year

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2018
Accepted
03 Dec 2018
First published
11 Dec 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 41299-41307

Si nanocrystal solution with stability for one year

D. Kajiya and K. Saitow, RSC Adv., 2018, 8, 41299 DOI: 10.1039/C8RA08816K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements