Issue 68, 2018, Issue in Progress

Vinylene and benzo[c][1,2,5]thiadiazole: effect of the π-spacer unit on the properties of bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing polymers for n-channel organic field-effect transistors

Abstract

Two polymers based on (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (BIBDF) coupled with (E)-2-(2-(thiophen-2-yl)vinyl)thiophene (TVT) or dithienylbenzothiadiazole (TBT), namely PBIBDF-TVT and PBIBDF-TBT were synthesized via the Stille coupling reaction. The effect of benzothiadiazole or vinylene-π spacer of the copolymers on optical properties, energy levels, electronic device performance and microstructure were studied. It was found that PBIBDF-TBT based OFET devices, annealed at 180 °C, showed better performance with the highest electron mobility of 2.9 × 10−2 cm2 V s−1 whereas PBIBDF-TVT polymer exhibited 5.0 × 10−4 cm2 V s−1. The two orders of magnitude higher electron mobility of PBIBDF-TBT over PBIBDT-TVT is a clear indicator of the better charge transport ability of this polymer semiconductor arising from its higher crystallinity and better donor–acceptor interaction.

Graphical abstract: Vinylene and benzo[c][1,2,5]thiadiazole: effect of the π-spacer unit on the properties of bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing polymers for n-channel organic field-effect transistors

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2018
Accepted
05 Nov 2018
First published
20 Nov 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 38919-38928

Vinylene and benzo[c][1,2,5]thiadiazole: effect of the π-spacer unit on the properties of bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing polymers for n-channel organic field-effect transistors

T. T. Do, B. B. Patil, S. P. Singh, S. D. Yambem, K. Feron, K. (. Ostrikov, J. M. Bell and P. Sonar, RSC Adv., 2018, 8, 38919 DOI: 10.1039/C8RA08890J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements