Issue 27, 2018

Combined scanning electrochemical and fluorescence microscopies using a tetrazine as a single redox and luminescent (electrofluorochromic) probe

Abstract

The possibility of using a single electroactive and luminescent molecule both as a redox mediator and as a fluorophore in an experiment combining in situ Scanning Electrochemical Microscopy (SECM) and epifluorescence microscopy was validated. The usual working modes of SECM, namely positive and negative feedback as well as generation–collection, were used and the fluorescence images, intensity and spectra were recorded for each configuration. The tip potential, tip–substrate distance and, in the case of a conducting substrate, the substrate potential are the parameters that are likely to control the fluorescence. It is shown that the tip can be used to switch on and off the luminescence and that the modulation amplitude maximum is sensitive to the nature of the substrate. Approach curves based on this fluorescence modulation amplitude can be obtained showing a higher sensitivity than the classical electrochemical ones.

Graphical abstract: Combined scanning electrochemical and fluorescence microscopies using a tetrazine as a single redox and luminescent (electrofluorochromic) probe

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Apr 2018
Accepted
29 May 2018
First published
30 May 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2018,9, 5897-5905

Combined scanning electrochemical and fluorescence microscopies using a tetrazine as a single redox and luminescent (electrofluorochromic) probe

L. Guerret-Legras, J. F. Audibert, G. V. Dubacheva and F. Miomandre, Chem. Sci., 2018, 9, 5897 DOI: 10.1039/C8SC01814F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements