Issue 9, 2018

Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies

Abstract

Hybrid solar photovoltaic (PV)/thermal power systems offer the possibility of dispatchable, affordable and efficient solar electricity production – the type of transformative innovation needed for solar cell devices to realize high grid penetration. The PV sub-system enjoys high efficiency, and the thermal sub-system can ensure uninterrupted power delivery via backup gas heating and/or multi-hour thermal storage. However, elucidation of the basic performance bounds, and the quantitative perspective required for judging the leading hybrid strategies relative to one another, as well as relative to the existing alternative of autonomous photovoltaic and solar thermal power systems, have remained incomplete. A more thorough and basic evaluation of the performance of the assorted combinations of PV and solar thermal sub-systems over a wider range of possible operating conditions than regarded previously is presented here. This involves analysis of the most fundamental processes limiting system efficiency, tempered by the realities of current and foreseeable PV and thermal technologies. The 3 leading hybrid strategies are: (1) concentrated solar beam radiation irradiating an integrated PV–thermal receiver, with the unique advantage of recuperating PV thermalization losses as heat delivered to the thermal receiver, thereby contributing to driving the turbine, (2) the spectral splitting of concentrated solar beam radiation, with sub-bandgap photons directed to a thermal receiver and the rest to concentrator PV cells, and (3) nominally 1 sun PV cells performing double duty as both a direct converter and as a spectrum-splitting reflector that concentrates sub-bandgap photons onto a thermal receiver. The two figures of merit appraised are: (a) the solar-to-electricity conversion efficiency, and (b) the share between thermal and PV electricity production.

Graphical abstract: Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies

Supplementary files

Article information

Article type
Communication
Submitted
01 Feb 2018
Accepted
17 Jul 2018
First published
18 Jul 2018

Sustainable Energy Fuels, 2018,2, 2060-2067

Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies

A. Vossier, J. Zeitouny, E. A. Katz, A. Dollet, G. Flamant and J. M. Gordon, Sustainable Energy Fuels, 2018, 2, 2060 DOI: 10.1039/C8SE00046H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements