Issue 13, 2018

Homogeneous melting near the superheat limit of hard-sphere crystals

Abstract

A defect-free crystal can be superheated into a metastable state above its melting point and eventually melts via homogeneous nucleation. Further increasing the temperature leads to the metastable crystal becoming unstable and melting catastrophically once beyond its superheat limit. The homogeneous melting is not well studied near the superheat limit and this limit is difficult to measure accurately, even for the simplest model of hard-sphere crystals. Here our molecular-dynamics simulations identify its superheat limit at volume fraction ϕlimit = 0.494 ± 0.003, which is higher than the previous theoretical estimations. We found that the hard-sphere crystal at the superheat limit does not satisfy Born's melting criterion, but has a vanishing bulk modulus, i.e. a spinodal instability, which preempts other thermodynamic or mechanical instabilities. At the strong superheating regime, the nucleation deviates from the assumptions in the classical nucleation theory. In contrast to crystallization which often develops nuclei with various intermediate structures, the melting of face-centered cubic (fcc) hard-sphere crystal does not produce intermediate structures such as body-centered cubic (bcc) crystallites although bcc is more stable than fcc at the strong superheating regime. Moreover, we found that the time evolutions of the order parameters and the pressure all exhibit a compressed exponential function, in contrast to the stretched exponential relaxation of supercooled liquids. The compressed exponential functions have the same exponent, which poses a new challenge to theory.

Graphical abstract: Homogeneous melting near the superheat limit of hard-sphere crystals

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2017
Accepted
10 Feb 2018
First published
12 Feb 2018

Soft Matter, 2018,14, 2447-2453

Homogeneous melting near the superheat limit of hard-sphere crystals

F. Wang, Z. Wang, Y. Peng, Z. Zheng and Y. Han, Soft Matter, 2018, 14, 2447 DOI: 10.1039/C7SM02291C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements