Issue 14, 2018

Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics

Abstract

Assembly of nanoparticles (NPs) coated with complementary DNA strands leads to novel crystals with nanosized basic units rather than classic atoms, ions or molecules. The assembly process is mediated by hybridization of DNA via specific base pairing interaction, and is kinetically linked to the disassociation of DNA duplexes. DNA-level physiochemical quantities, both thermodynamic and kinetic, are key to understanding this process and essential for the design of DNA-NP crystals. The melting transition properties are helpful to judge the thermostability and sensitivity of relative DNA probes or other applications. Three different cases are investigated by changing the linker length and the spacer length on which the melting properties depend using the molecular dynamics method. Melting temperature is determined by sigmoidal melting curves based on hybridization percentage versus temperature and the Lindemann melting rule simultaneously. We provide a computational strategy based on a coarse-grained model to estimate the hybridization enthalpy, entropy and free energy from percentages of hybridizations which are readily accessible in experiments. Importantly, the lifetime of DNA bond dehybridization based on temperature and the activation energy depending on DNA bond strength are also calculated. The simulation results are in good agreement with the theoretical analysis and the present experimental data. Our study provides a good strategy to predict the melting temperature which is important for the DNA-directed nanoparticle system, and bridges the dynamics and thermodynamics of DNA-directed nanoparticle systems by estimating the equilibrium constant from the hybridization of DNA bonds quantitatively.

Graphical abstract: Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2017
Accepted
26 Feb 2018
First published
26 Feb 2018

Soft Matter, 2018,14, 2665-2670

Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics

Q. Yu, J. Hu, Y. Hu and R. Wang, Soft Matter, 2018, 14, 2665 DOI: 10.1039/C7SM02456H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements