An attraction–repulsion transition of force on wedges induced by active particles†
Abstract
Effective forces between two micro-wedges immersed in an active bath are investigated using Brownian dynamics simulations. Two anti-parallel and parallel wedge-like obstacles are considered respectively, and the effective forces between two wedges rely on the wedge-to-wedge distance, the apex angle of the wedge, as well as the particle density and aspect ratio. For two anti-parallel wedges, a transition from repulsion to attraction occurs by varying the apex angle, which is also sensitive to the particle density and aspect ratio. The optimal apex angle θr* (or θa*) and particle density ρ* are characterized by the saturated trapping of active particles inside a wedge. For two parallel wedges, the effective force also experiences a transition from repulsion to attraction as the wedge-to-wedge distance increases. These results originate from the collective trapping effect which is driven by the many-body dynamics of self-propelled particles in the confinement (near the boundary) of obstacles. Our results can provide insight into controlling the motion and assembly of microscopic objects through the suspension of active particles.