Different routes into the glass state for soft thermo-sensitive colloids
Abstract
We report an experimental and theoretical investigation of glass formation in soft thermo-sensitive colloids following two different routes: a gradual increase of the particle number density at constant temperature and an increase of the radius in a fixed volume at constant particle number density. Confocal microscopy experiments and the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory consistently show that the two routes lead to a dynamically comparable state at sufficiently long aging times. However, experiments reveal the presence of moderate but persistent structural differences. Successive cycles of radius decrease and increase lead instead to a reproducible glass state, indicating a suitable route to obtain rejuvenation without using shear fields.