Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory
Abstract
Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens–Fleer approach.
- This article is part of the themed collection: Electrostatics and Soft Matter