Issue 39, 2018

Investigation of failure behavior of a thermoplastic elastomer gel

Abstract

Gels are increasingly being used in many applications, and it is important to understand how these gels fail subjected to mechanical deformation. Here, we investigate the failure behavior of a thermoplastic elastomer gel (TPEG) consisting of poly(styrene)–poly(isoprene)–poly(styrene) in mineral oil, in tensile mode, under constant stress, and in fracture tests, where the fracture initiates from a predefined crack. In these gels, the poly(styrene) endblocks associate to form spherical aggregates, as captured using SAXS. Shear-rheology experiments indicate that the poly(isoprene) midblocks connecting these aggregates are loosely entangled. The relaxation behavior of these gels has been captured by time–temperature superposition of frequency sweep data and stress-relaxation experiments. The relaxation process in these gels involves endblock pullout from the aggregates and subsequent relaxation of the chains. An unfavorable enthalpic interaction between the endblock and mineral oil results in a significantly large relaxation time. These gels display rate dependent mechanical properties, likely due to the midblock entanglements. Fracture and creep failure tests provide insights into the gel failure mechanism. Creep experiments indicate that these gels fail by a thermally activated process. Fracture experiments capture the energy release rate as a function of crack-tip velocity. The critical energy release rate is estimated by incorporating the friction force the polystyrene chains are subjected to, as those are pulled out of aggregates, and the enthalpic cost to overcome unfavorable interaction between poly(styrene) and mineral oil. Our results provide further insights to the failure behavior of the self-assembled TPEGs.

Graphical abstract: Investigation of failure behavior of a thermoplastic elastomer gel

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2018
Accepted
09 Aug 2018
First published
09 Aug 2018

Soft Matter, 2018,14, 7958-7969

Author version available

Investigation of failure behavior of a thermoplastic elastomer gel

S. Mishra, R. M. Badani Prado, T. E. Lacy and S. Kundu, Soft Matter, 2018, 14, 7958 DOI: 10.1039/C8SM01397G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements