Issue 9, 2018

High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism

Abstract

Bulk heterojunction (BHJ) perovskite solar cells have recently attracted increased interest because of a significantly enhanced interface between perovskite and the n-type material in the active layer for efficient charge separation and increased power conversion efficiency (PCE). [6,6]-Phenyl-C61-butyric acid methyl ester (PC61BM) is the most commonly used n-type material in BHJ perovskite solar cells owing to its high electron mobility. However, it is very difficult to fabricate BHJ perovskite films because of the poor solubility of PC61BM in the commonly used solvent dimethylformamide (DMF). In this study, we introduced two kinds of fluorinated PC61BM (3F-PC61BM and 5F-PC61BM) as n-type materials in a BHJ perovskite film, which have higher solubility in DMF than that of PC61BM. Thus, a BHJ perovskite film can be easily fabricated in one step using a single solvent in a BHJ precursor solution system for planar perovskite solar cells. A BHJ device with a high PCE of 16.17% can be obtained by adding 0.1 wt% of 3F-PC61BM in a perovskite precursor solution to fabricate a solar cell, which outperforms the PCE of 14.12% of the pristine device. However, the addition of 5F-PC61BM decreased the PCE to lower than that of the pristine device regardless of its amount. We systematically studied the effects of the amount and type of fluorinated PC61BM on the morphology of BHJ perovskite films using SEM, AFM, GISAXS and GIWAXS. The results reveal that 3F-PC61BM can fill the pinholes between perovskite grains and passivate the defects in the pristine film. Thus, the current density (Jsc) is greatly increased. On the other hand, the self-aggregation of 5F-PC61BM in BHJ perovskite films caused the films to be full of large voids, which led to poor device performance. The dense and flat surface morphology of BHJ perovskite films containing 3F-PC61BM can also prevent the permeation of moisture into grain boundaries and enhance the device stability. Therefore, the device could maintain 80% of its original efficiency over 550 hours without any encapsulation in comparison with 240 hours for the pristine device. Our results provide a novel strategy for fabricating high-PCE and high-stability BHJ perovskite solar cells for the production of low-cost solar cells in the near future.

Graphical abstract: High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2017
Accepted
30 Jan 2018
First published
01 Feb 2018

J. Mater. Chem. A, 2018,6, 4179-4188

High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism

C. Chang, C. Wang, R. Raja, L. Wang, C. Tsao and W. Su, J. Mater. Chem. A, 2018, 6, 4179 DOI: 10.1039/C7TA07939G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements