Issue 2, 2018

3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity

Abstract

Three-dimensional, superhydrophobic, reduced graphene oxide (RGO) with unique hierarchical structures is synthesized by spark plasma sintering (SPS) in one step for highly selective NO2 detection. Because the oxygenated functional groups in graphene oxide (GO) can be effectively removed to a minimal content (8.8%) by SPS within just 60 s, the formed 3D RGO exhibits superhydrophobicity that endows the fabricated RGO sensor with exceptional immunity to high relative humidity (RH). Specifically, the RGO sensor exhibits a response degradation less than 5.5% to 1 ppm NO2 in a wide temperature range from 25 to 140 °C when the RH increases from 0% to 70%. In addition, an integrated microheater array is employed to remarkably activate the RGO-based NO2 sensor, boosting the sensitivity. The RGO sensor demonstrates the practical capability to detect 50 ppb NO2 and exhibits an extremely low theoretical limit of detection of 9.1 ppb. The good tolerance to environmental variations such as humidity and temperature makes this sensor suitable for reliable application in the Internet of Things (IoT) under ambient conditions. The high NO2 sensing performance is attributed to the unique 3D hierarchical structures with a high specific surface area (850 m2 g−1), a superhydrophobic surface, abundant defect sites and thermal activation.

Graphical abstract: 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity

Supplementary files

Article information

Article type
Paper
Submitted
05 Oct 2017
Accepted
27 Nov 2017
First published
29 Nov 2017

J. Mater. Chem. A, 2018,6, 478-488

3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity

J. Wu, Z. Li, X. Xie, K. Tao, C. Liu, K. A. Khor, J. Miao and L. K. Norford, J. Mater. Chem. A, 2018, 6, 478 DOI: 10.1039/C7TA08775F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements