Issue 6, 2018

Recent progress towards high performance of tin chalcogenide thermoelectric materials

Abstract

Thermoelectric materials have been extensively studied for decades to help resolve the global energy shortage and environmental problems. Many efforts have been focused on the improvement of the figure of merit (ZT) for highly efficient power generation. Lead telluride is one of the materials with high ZT, but lead toxicity is always a concern, which has inspired research on lead-free tin chalcogenides. ZT values as high as ∼2.6 at 923 K for SnSe single crystals and ∼1.6 at 923 K for Sn0.86Mn0.14Te(Cu2Te)0.05-5 atm% Sn were recently reported, attracting extensive attention for potential applications. In this review, we present the progress in SnTe, SnSe, and SnS, mainly discussing the effective tuning of the electron and phonon transport based on the intrinsic properties, along with the challenges for further optimization and applications. For SnTe, successful strategies, including resonant doping, band convergence, defect engineering, etc., are discussed. For SnSe, we focus on the analysis of the intrinsic low thermal conductivity due to strong anharmonicity and a high Seebeck coefficient because of the multi-valley bands. For SnS, high performance is expected considering its similar band structure and crystal structure to SnSe.

Graphical abstract: Recent progress towards high performance of tin chalcogenide thermoelectric materials

Article information

Article type
Review Article
Submitted
11 Nov 2017
Accepted
05 Jan 2018
First published
08 Jan 2018

J. Mater. Chem. A, 2018,6, 2432-2448

Recent progress towards high performance of tin chalcogenide thermoelectric materials

S. Li, X. Li, Z. Ren and Q. Zhang, J. Mater. Chem. A, 2018, 6, 2432 DOI: 10.1039/C7TA09941J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements