Issue 8, 2018

EMIMBF4–GBL binary electrolyte working at −70 °C and 3.7 V for a high performance graphene-based capacitor

Abstract

Developing an ionic-liquid (IL) type electrolyte with both high voltage window and wide temperature window, especially the low temperature range, is crucial to increase the energy density of the associated electrical double layer capacitors. We proposed the addition of γ-butyrolactone (GBL) in EMIMBF4 to form a binary electrolyte. The melting point (∼15 °C) of EMIMBF4 disappeared and the glass transition point decreased from −95 °C (for pure EMIMBF4) to −126 °C for the binary electrolyte. The binary electrolyte also exhibited improved ionic conductivity (26 and 0.31 mS cm−1 at 20 and −70 °C, respectively) and allowed an electrode of mesoporous graphene to exhibit a capacitance of 131 F g−1 and energy density of 61 W h kg−1 at −70 °C and 3.7 V, the highest values reported so far. NMR and ATR-IR characterization validated the strong interaction between GBL and EMIMBF4 for breaking the ion pairs of the latter but without forming the solvated ions, as in the system of EMMIBF4 with propylene carbonate.

Graphical abstract: EMIMBF4–GBL binary electrolyte working at −70 °C and 3.7 V for a high performance graphene-based capacitor

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2017
Accepted
22 Jan 2018
First published
22 Jan 2018

J. Mater. Chem. A, 2018,6, 3593-3601

EMIMBF4–GBL binary electrolyte working at −70 °C and 3.7 V for a high performance graphene-based capacitor

J. Tian, C. Cui, Q. Xie, W. Qian, C. Xue, Y. Miao, Y. Jin, G. Zhang and B. Guo, J. Mater. Chem. A, 2018, 6, 3593 DOI: 10.1039/C7TA10474J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements