Issue 6, 2018

Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss

Abstract

Two new non-fullerene (NF) acceptors, namely BDTIT-M and BDTThIT-M, were rationally designed to optimize the energy levels and optical bandgap. BDTIT-M is derived by changing the end-group of NFBDT into slightly weak DCI-M, and BDTThIT-M is obtained by adding two conjugated thiophene side-chains into a ladder-type core of BDTIT-M. By incorporating with the polymer donor PBDB-T, BDTIT-M based organic solar cells (OSCs) deliver a higher PCE of 11.31% compared to that of NFBDT based cells, which is mainly attributed to the increased VOC and FF. A higher PCE of 12.12% with a small energy loss of ∼0.588 eV is achieved compared with BDTThIT-M based OSCs, benefiting from the elevated LUMO level, narrowed bandgap, and enhanced absorption coefficient and electron mobility of BDTThIT-M compared with BDTIT-M. The combination of a methyl-modified end-group and conjugated side-chain should be an efficient strategy to elevate the LUMO and HOMO levels with different amplitudes for realizing simultaneous improvement in VOC and JSC.

Graphical abstract: Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss

Supplementary files

Article information

Article type
Communication
Submitted
08 Dec 2017
Accepted
16 Jan 2018
First published
16 Jan 2018

J. Mater. Chem. A, 2018,6, 2468-2475

Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss

Q. An, W. Gao, F. Zhang, J. Wang, M. Zhang, K. Wu, X. Ma, Z. Hu, C. Jiao and C. Yang, J. Mater. Chem. A, 2018, 6, 2468 DOI: 10.1039/C7TA10763C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements