A highly efficient Ni–Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF†
Abstract
A highly efficient Ni–Mo bimetallic catalyst for the hydrogen evolution reaction can be obtained from a molybdate incorporated Ni-MOF by thermal decomposition in NH3. The catalyst is composed of crystalline Ni nanoparticles doped with amorphous low valence Mo oxide encapsulated in thin N-doped carbon layers, showing excellent HER performance, featuring a very low overpotential for the HER (η20 = 58 mV), low Tafel slope (57 mV dec−1) and excellent long term stability. The catalyst apparently outperforms N-doped carbon encapsulated Ni catalysts without Mo doping, emphasizing the critical synergetic effect of Mo doping and the surface N-doped carbon thin layer on promoting the performance of Ni based HER catalysts.