Issue 28, 2018

Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries

Abstract

Currently, MXenes have been identified as promising electrode material candidates because of their excellent energy storage and electrical conductivity. In the present study, Na adsorptions on 2D MXenes of Zr2C, Zr3C2, Zr2CO2, and Zr3C2O2 are explored by density functional theory (DFT) calculations. We have found that Zr2CO2/Zr3C2O2 MXenes show metallic behavior after Na adsorption and exhibit a low diffusion barrier (0.29/0.32 eV) and high storage capacity (up to Zr2CO2Na4/Zr3C2O2Na4 stoichiometry) for Na-ion batteries (NIBs). Zr2CO2/Zr3C2O2 MXenes also exhibit excellent properties such as good electrical conductivity, low diffusion barrier, decreased equilibrium open circuit voltage (OCV), and high theoretical capacity of Na storage, due to which they can be used as promising anode materials for NIBs. In addition, the physical origin of adsorption behavior of Na atoms on Zr2CO2/Zr3C2O2 as well as on Ti3C4, Ti3C2O2 and Ti3C2S2 MXenes is studied. Our results give insights into understanding the manner in which the theoretical capacity can be efficiently tuned by charge transfer and lattice mismatch factors, which will be useful for designing other 2D anode materials for NIBs.

Graphical abstract: Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2018
Accepted
14 Jun 2018
First published
15 Jun 2018

J. Mater. Chem. A, 2018,6, 13652-13660

Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries

Q. Meng, J. Ma, Y. Zhang, Z. Li, A. Hu, J. Kai and J. Fan, J. Mater. Chem. A, 2018, 6, 13652 DOI: 10.1039/C8TA04417A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements