Issue 43, 2018

Thermal and thermoelectric properties of monolayer indium triphosphide (InP3): a first-principles study

Abstract

Monolayer indium triphosphide (InP3) is a newly predicted 2D material with a quasi-direct electronic band gap which is predicted to exhibit fascinating adsorption efficiency, foreshadowing its potential applications in the photovoltaic and optoelectronic communities. To achieve a combination of photovoltaic and thermoelectric technologies and further boost the energy utilization rate, in this paper we systematically investigate the thermal and thermoelectric properties through combining first-principles calculations and semiclassical Boltzmann transport theory. Our calculations show that the average lattice thermal conductivity of monolayer InP3 is about 0.63 W mK−1 at room temperature, which is comparable to that of classical thermoelectric materials. Such a poor phonon transport property mainly originates from its smaller group velocity and stronger phonon–phonon scattering (including both scattering magnitude and channels). Unlike the isotopic phonon transport property, the electronic conductivity and electronic thermal conductivity of monolayer InP3 present obvious anisotropic behavior. Meanwhile, a high Seebeck coefficient is also predicted in monolayer InP3 with both n- and p-type doping due to the large electronic band gap and sharp increase in electronic conductivity. By using the electron relaxation time estimated from deformation potential theory, the room temperature thermoelectric figure of merit of monolayer InP3 is found to be as high as 2.06 (with p-type doping) and 0.61 (with n-type doping) along the armchair and zigzag directions, which are substantially larger than for black phosphorene (ZT ∼ 0.4 at room temperature). The results presented in this work shed light on the thermoelectric performance of monolayer InP3 and qualify its potential application in a multifunction device that contains both photovoltaic and thermoelectric technologies.

Graphical abstract: Thermal and thermoelectric properties of monolayer indium triphosphide (InP3): a first-principles study

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2018
Accepted
14 Oct 2018
First published
16 Oct 2018

J. Mater. Chem. A, 2018,6, 21532-21541

Thermal and thermoelectric properties of monolayer indium triphosphide (InP3): a first-principles study

T. Ouyang, E. Jiang, C. Tang, J. Li, C. He and J. Zhong, J. Mater. Chem. A, 2018, 6, 21532 DOI: 10.1039/C8TA07012A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements