Issue 46, 2018

High-yield production of stable antimonene quantum sheets for highly efficient organic photovoltaics

Abstract

High-performance organic photovoltaics (OPVs) are of great scientific and technological importance due to their potential large-scale industrial applications. Introducing semiconductor quantum dots has been proven to be an effective way to improve the power conversion efficiency (PCE) of OPVs. In this paper, we report a novel approach to fabricate atomically thin antimonene quantum sheets (AMQSs) possessing a uniform size (≈2.2 nm) via imidazolium ionic liquid-assisted exfoliation. In this method, the yield of AMQSs (1.1 mg mL−1) has been increased by nearly two orders of magnitude compared with that of previously reported methods. Furthermore, upon adding AMQSs into the light absorber in OPVs, the optimal device with 1.0 mg mL−1 AMQSs shows the highest PCE of 9.75%, resulting in over 25% enhancement in PCE compared to that of the reference device. It also leads to a noticeable enhancement in the short-circuit current density (Jsc) of 16.7% and the fill factor (FF) of 8.4%. The increased PCE is mainly due to the two-dimensional electronic structure of AMQSs that can enhance the light absorption, assist exciton dissociation and reduce charge recombination of OPVs. This work provides a new avenue toward mass production of two-dimensional quantum sheets and points to a new strategy for highly efficient OPVs.

Graphical abstract: High-yield production of stable antimonene quantum sheets for highly efficient organic photovoltaics

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2018
Accepted
01 Nov 2018
First published
02 Nov 2018

J. Mater. Chem. A, 2018,6, 23773-23779

High-yield production of stable antimonene quantum sheets for highly efficient organic photovoltaics

Z. Wang, R. Zhang, M. Zhao, Z. Wang, B. Wei, X. Zhang, S. Feng, H. Cao, P. Liu, Y. Hao, H. Wang, B. Xu, S. J. Pennycook and J. Guo, J. Mater. Chem. A, 2018, 6, 23773 DOI: 10.1039/C8TA07214K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements